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Abstract
1.	 Establishment of protected areas to maintain biodiversity requires identification, 

prioritization and management of stressors that may undermine conservation goals. 
Nonindigenous species and climate change are critical ecosystem stressors that need 
greater attention in the context of spatial planning and management of protected 
areas. Risk of invasion into protected areas needs to be quantified under current and 
projected climate conditions in conjunction with prioritization of key vectors and 
vulnerable areas to enable development of effective management strategies.

2.	 We assessed the likelihood of invasion across networks of marine protected areas 
(MPAs) to determine how invaded MPAs may compromise MPA networks by shar-
ing nonindigenous species. We evaluated invasion risk in 83 MPAs along Canada's 
Pacific coast for eight nonindigenous species based on environmental suitability 
under current and future (average conditions from 2041 to 2070) climate condi-
tions and association with shipping and boating pathways. We applied species 
distribution models and network analysis of vessel tracking data for 805 vessels in 
2016 that connected MPAs.

3.	 The probability of occurrence within MPAs and the proportion of MPA area that 
is suitable to the modelled species significantly increased under future climate 
conditions, with six species reaching over 90% predicted occurrence across MPAs 
and over 70% of suitable area within MPAs. Vessel traffic created four network 
clusters of 61 highly connected MPAs that spanned the coastline. Occupancy of 
over 90% of the MPAs within the clusters was predicted for most species.

4.	 Synthesis and applications. Our results indicate a high likelihood of marine pro-
tected area (MPA) network invasion based on current and future environmental 
conditions and vectors of spread, and the potential for extensive nonindigenous 
species distributions within MPAs. Our approach highlights how interacting 
stressors can exacerbate MPA susceptibility to nonindigenous species, adding 
further challenges for protected area management. Management planning that 
invests in understanding connectivity and vector processes (human behaviours) 
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1  | INTRODUC TION

The Convention on Biological Diversity Aichi Targets call for a global 
increase in ‘ecologically representative and well-connected systems 
of protected areas’ alongside management and mitigation of eco-
system stressors including invasive, nonindigenous species and cli-
mate change (Targets 9–11). Marine protected areas (MPAs) covered 
6 million km2 in 2018 and increased to 29 million km2 by January 
2020, with a goal of 36 million km2 protected by the end of 2020 
(UNEP-WCMC, IUCN, & NGS, 2018, 2020). Nonindigenous species 
invasions may be effectively reduced by protection of relatively pris-
tine areas and restriction of human activities (Gallardo et al., 2017). 
MPAs may also buffer the effects of climate change more than un-
protected areas by maintaining diverse and abundant biota (creating 
functional redundancy) and preventing carbon loss by avoiding hab-
itat disturbance (Roberts et al., 2017). Despite these benefits, MPAs 
are still susceptible to ocean warming and to invasions from unman-
aged pathways and species redistribution. The protected status of 
MPAs make them key focal areas for understanding the impacts of 
stressors, and MPA legislation, regulations and policies provide man-
agers with the tools to regulate some of these stressors.

Nonindigenous species are prevalent in MPAs globally (Iacarella, 
Saheed, Dunham, & Ban, 2019), and some have had large impacts 
on protected communities (Coma et al., 2011; Gallagher et al., 2017; 
Kaplan et al., 2018). However, vectors of nonindigenous species are 
rarely considered in spatial planning or restricted in MPA manage-
ment plans (Giakoumi et  al.,  2016; Iacarella, Saheed, et al.,  2019; 
Mačić et  al.,  2018). Ships and boats are the most prevalent vec-
tors in marine systems through organism entrainment in ballast 
water and biofouling (Molnar, Gamboa, Revenga, & Spalding, 2008; 
Williams et al., 2013). Whether a nonindigenous species will estab-
lish upon introduction depends on propagule pressure (number of 
individuals released and number of release events), environmen-
tal suitability and biotic interactions with the resident community 
(Colautti, Grigorovich, & MacIsaac,  2006; Lockwood, Cassey, & 
Blackburn, 2005).

Shifts in environmental suitability from climate change will 
alter the composition of native and nonindigenous species cur-
rently present in protected areas, as well as the likelihood of fu-
ture invasions. Warmer temperatures have caused nonindigenous 
species outbreaks (Walther et  al.,  2009) and can alter impact po-
tential (Hellmann, Byers, Bierwagen, & Dukes, 2008). The rate and 

prevalence of range expansions and contractions are predicted to 
vary across biomes and taxa. For nonindigenous species, freshwater 
and terrestrial invertebrate ranges are expected to expand globally, 
whereas ranges of invasive birds and amphibians are expected to 
contract (Bellard et al., 2013). In marine systems, global models pre-
dict range expansions to dominate over contractions with invasions 
generally adding species to communities without extirpation (García 
Molinos et al., 2015). Climate-induced changes in environmental 
suitability will interact with changes in shipping and other pathways 
to provide new opportunities for the introduction and spread of 
nonindigenous species (Ricciardi et al., 2017). For many MPAs, there 
is little understanding of the strength of invasion pathways, how in-
vasions will change under future climate conditions and how this will 
vary by species. Consequently, many MPAs lack effective manage-
ment strategies for nonindigenous species invasions.

Marine spatial planning designs benefit from high connectivity 
among MPAs by ensuring larval, nutrient and energy flow (Balbar 
& Metaxas, 2019). However, high connectivity for nonindigenous 
species in the form of self-dispersal or human-mediated vectors 
can lead to many MPAs in a network becoming susceptible to the 
impacts of an invader. At the individual MPA level, invasion risk 
should be considered from proximal sources and vectors moving 
from unprotected, invaded areas into MPAs as nonindigenous spe-
cies may enter an MPA from a multitude of sources and locations 
(Iacarella, Burke, et al., 2020). A systematic analyses of these vari-
ous sources and locations is beyond the scope of this study, rather 
we focus here on investigating the potential that upon entry, an 
invader may be further spread to other MPAs within a network 
provided network connections. We evaluate the likelihood of do-
mestic, secondary spread of nonindigenous species among MPAs 
by measuring two components of establishment potential: envi-
ronmental suitability and anthropogenic vector strength via ships 
and boats. We predict environmental suitability under current and 
future climate conditions for eight nonindigenous species that are 
currently present along the coast of British Columbia (BC), Canada 
and pair this with analysis of vessel traffic patterns to characterize 
networks of invasion potential across MPAs. We expect that MPAs 
that have high environmental suitability and strong vessel con-
nections among MPAs are likely to share nonindigenous species. 
We suggest that when managing MPA networks, either as pre- 
designated networks or networks based on connection strength, 
the nonindigenous species that are predicted to be able to invade 

is more likely to derive effective policies to stem the flow of nonindigenous spe-
cies under both current and future conditions. In particular, biosecurity measures 
including vessel biofouling regulations and MPA- and MPA network-specific plans 
for prevention, monitoring and mitigation of nonindigenous species are needed.

K E Y W O R D S

automatic identification systems, biosecurity regulations, conservation areas, invasive alien 
species, network analysis, ship and boat vectors, species distribution models, species range shifts
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many of the MPAs within the network (and have high impacts) are 
those that should be prioritized. Our results identify nonindige-
nous species, vessel connections and MPA networks that can be 
targeted by management efforts using protected area legislation 
(e.g. mandated cleaning practices before entry or prior to depart-
ing). This provides first-step measures of the three components 
of invasions—species, pathways and sites—that must form priori-
tization assessments for decision making to achieve Aichi Targets 
(McGeoch et al., 2016).

2  | MATERIAL S AND METHODS

2.1 | Environmental suitability in MPAs

Eight nonindigenous, noncultured species were selected for analy-
sis of environmental suitability based on high likelihood of inva-
sion and impact (i.e. risk) in Canada's Pacific coast waters (Drolet 

et al., 2016) and adequate geospatial records for model fitting. All 
of these nonindigenous species are currently present in the study 
area, and include Styela clava (tunicate), Botryllus schlosseri (tuni-
cate), Didemnum vexillum (tunicate), Botrylloides violaceus (tuni-
cate), Carcinus maenas (crab), Ocinebrellus inornatus (snail), Caprella 
mutica (amphipod) and Sargassum muticum (seaweed; hereafter 
referred to by genus; Table 1). Tunicates comprise half of the mod-
elled species as they represent high risk species with a demon-
strated propensity to foul vessel hulls (Clarke Murray, Pakhomov, 
& Therriault,  2011; Clarke Murray et  al.,  2014; Therriault & 
Herborg, 2007). Although they are often found on artificial struc-
tures, they can invade natural substrates and impact native ben-
thic communities (Kaplan et al., 2018; Simkanin, Davidson, Dower, 
Jamieson, & Therriault, 2012).

Species occurrence records were collected from the scien-
tific and technical literature, online databases and Fisheries and 
Oceans Canada monitoring programmes for the Pacific coast 
from Baja California, Mexico to the Gulf of Alaska (24–62°N and 

TA B L E  1   Primary introduction and spread details of nonindigenous species included in environmental suitability analysis for British 
Columbia, Canada (Fofonoff et al., 2018; Molnar et al., 2008; see Appendix S3 for maps of distributions)

Nonindigenous 
species Origin

Introduction 
vectors Impacts Larval settlement

Self-dispersal 
potential

Year first obs., 
distribution in BC

Styela clava Asia Shipping, 
aquaculture

Modifies native habitat; 
competes for food and 
space resources

Immediate to <1 day 
(anchiplanic)

Limited 1994, limited to 
southern extent

Botryllus 
schlosseri

Europe Shipping, 
aquaculture

Modifies native habitat; 
overgrows and competes 
with attached, filter-feeding 
organisms

Immediate to <1 day 
(anchiplanic)

Limited 1998, widespread

Didemnum 
vexillum

Japan Shipping, 
aquaculture

Modifies native habitat by 
forming dense mats along 
seabed; changes benthic 
community composition

Immediate to <1 day 
(anchiplanic)

Limited 2003, limited to 
southern extent

Botrylloides 
violaceus

Asia Shipping, 
aquaculture

Competes for space 
resources; becomes a 
permanent member of the 
community, but not likely 
to replace present native 
species

Immediate to <1 day 
(anchiplanic)

Limited 1992, widespread

Carcinus maenas Europe Shipping, 
aquaculture, 
live seafood 
trade, 
aquarium 
trade

Voracious predator that has 
caused declines in crab and 
bivalve species

25–90 days 
(anchiplanic)

Moderate distance 
as larvae and 
megalopa

1999, limited 
to exposed 
southern 
extent, actively 
spreading north

Ocinebrellus 
inornatus

Asia Aquaculture Outcompetes native 
predatory sea snails

None, crawl away 
larvae (aplanic)

Limited 1935, limited to 
southern extent

Caprella mutica Siberia Shipping, 
aquaculture

Competes for food and space 
resources

None, free-swimming 
juvenile

Long-distance by 
rafting on drifting 
algae, localized 
free-swimming

2006, widespread

Sargassum 
muticum

Asia Shipping, 
aquaculture

Modifies native habitat by 
forming dense monospecific 
stands; strong competitor 
for space and light

Immediate Long-distance 
drifting 
vegetation

1955, widespread
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111–155°W; see Appendix S1 for species sample sizes and data 
sources). Some of the tunicates, such as Botryllus, may repre-
sent different clades of the same species complex (e.g. Nydam, 
Giesbrecht, & Stephenson,  2017). The models may over- or un-
derestimate environmental suitability of these species if genetic 
differences between clades results in different environmental 
tolerances. However, in the absence of confirmed data on genetic 
structure or reported differences in tolerances along the west 
coast of North America, we treated all possible clades within each 
species complex together as a single species. Species records and 
present-day seasonal, sea surface temperature and salinity clima-
tologies were used to fit species distribution models at a resolu-
tion of 0.04° (3.8 × 3.8 km) in Maxent (v. 3.4.1; Phillips, Dudík, & 
Schapire, 2017), which is designed specifically for presence-only 
data (Elith et al., 2011). All models were fit using 30-fold random 
cross validation to assess uncertainty and estimate confidence 
intervals, except 19-fold random cross validation was used for 
Ocinebrellus owing to fewer observational records. Future envi-
ronmental suitability was similarly modelled using temperature 
and salinity projections from the BC ROMS model (RCP 8.5, 
2041–2070; Peña, Fine, & Masson, 2018). Environmental suitabil-
ity was predicted for waters shallower than 200 m, the estimated 
maximum survivable depth for the modelled nonindigenous spe-
cies (Herborg, O’Hara, & Therriault,  2009; Locke, Hanson, Ellis, 
Thompson, & Rochette, 2007; Therriault & Herborg, 2008).

Eighty-three of 195 MPAs within BC were compiled as those 
that have (a) a management plan or draft/interim plan (excluded 49), 
(b) a purpose statement or zoning plan within these documents that 
identified a marine conservation value (excluded 61) and (c) a spatial 
extent within waters shallower than 200 m (excluded 2). MPA spatial 

extents were trimmed to contain only depths ≤200 m to match envi-
ronmental suitability models. MPAs were then spatially overlaid with 
species distribution models and assigned gridded occurrence proba-
bility values (ArcGIS v. 10.4; Figure 1). Seven MPAs with low model 
coverage (i.e. in inlets; future climate models with ≤17% cover) were 
excluded, retaining 76 for environmental suitability analysis. Any 
spatial extent within MPAs that was missing model coverage was not 
considered in the environmental suitability analysis (10 of 76 MPAs 
had 75%–99% coverage for current and future climate models, the 
remainder had 100% coverage); we determined that extrapolation 
would be inaccurate as model coverage was primarily missing from 
MPA extents that were further inland and often associated with 
freshwater input. For both climate models, 16 MPAs intersected 
one gridded occurrence probability value (‘cell’), 46 intersected 2–14 
cells and 14 intersected 14–315 cells (Appendix S2, Figure S1).

Environmental suitability for each MPA, k, was calculated as (a) 
the probability of occurrence of species j in at least one cell l and 
(b) the proportion of MPA k area that is suitable for species j. The 
probability of at least one occurrence was calculated as 1  −  the 
product of the probabilities of cell-level non-occurrence (Williams 
& Araújo, 2002):

where pjk is the probability species j is present in MPA k, and pjkl are 
the gridded probabilities of occurrence estimated by the species 
distribution models. For example, the probability of occurrence in 
Figure 1 is 1 − ([1 − 0.18] × [1 − 0.17] × [1 − 0.18] × [1 − 0.21]) = 0.56.  
The total expected number of nonindigenous species that can occur 

(1)pjk = 1 −

L
∏

l=1

(

1 − pjkl
)

,

F I G U R E  1   Marine bioregions of British 
Columbia, Canada and marine protected 
areas (MPAs) included in the study. Inset: 
Occurrence probability values (‘p’) for 
areas of an MPA that overlap species 
distribution model cells (3.8 × 3.8 km). The 
area of the MPA that falls within a cell is 
calculated as the proportion of the total 
MPA area
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in MPA k (E(Sk)) is, then, the sum of the probabilities of occurrence 
in at least one cell for each species (Calabrese, Certain, Kraan, & 
Dormann, 2014):

Similarly, the number of MPAs in which species j is expected to be able 
to occur (E(Mj)) was the sum of the probabilities of occurrence for each 
MPA:

We applied nonparametric bootstrapping with replacement (n = 2,000)  
to Maxent model replicates and used the randomly selected mod-
els for Equations  2 and 3 to obtain mean and 95% confidence in-
terval estimates of nonindigenous species richness and occurrence 
across MPAs by species respectively. Lastly, the proportion of MPA 
k area that is suitable for species j was calculated as the sum of cell 
probabilities multiplied by the proportion of MPA k area that they 
cover:

where al is the proportion of the area of MPA k filled by cell l. For exam-
ple in Figure 1, the proportion of area that is suitable is (0.18 × 0.28) +  
(0.17 × 0.28) + (0.18 × 0.44) + (0.21 × 0.01) = 0.18. The means of cell 
probabilities across model replications for each species were used for 
this calculation.

2.2 | Vessel traffic connections

We identified how vessel traffic links MPAs and contributes to 
across-MPA invasion risk for MPA network-level management pri-
oritization. Vessel traffic connections between the 83 MPAs were 
determined using hourly automatic identification system data for 
2016 (MarineTraffic; https://www.marin​etraf​fic.com). We focused 
on vessel traffic within MPAs, not outside and found in preliminary 
analyses that vessel densities were similarly high within MPAs as 
within comparable, outside buffer extents (Appendix S2, Figure S2). 
For the 805 vessels that entered at least two MPAs (of an original 
8,142), shortest-path overwater routes were interpolated using 
a network grid of 1-km-sided triangles and coastline. Route seg-
ments that connected points within MPAs were intersected by the 
MPAs to determine the route length within and outside. Duration 
within MPAs and vessel speed was calculated for each connection 
created by a vessel moving between two MPAs. Only connections 
with vessel speeds ≤20.5  m/s were retained as this is the maxi-
mum speed reported for the tracked vessel types (Clarke Murray 
et  al.,  2011). Vessel duration within MPAs was calculated as the 

total duration within two connected MPAs across multiple con-
nections made by vessels, which was used to identify MPAs that 
are highly connected to each other. We chose vessel duration as 
a measure of connection strength given that more time in MPAs 
increases risk of nonindigenous species vector colonization and 
introduction (Carlton & Hodder, 1995; Minchin & Gollasch, 2003), 
whereas the invasion risk created by the number of vessels that 
enter an MPA is dependent on their duration within the MPA. 
Other vessel characteristics such as hull fouling surface area, his-
tory of antifouling treatments, ballast and bilge tank size and up-
take/release activities also mediate invasion risk; however, these 
components require detailed information that is more conducive 
to an individual MPA risk analysis. MPA vessel traffic network 
clusters (i.e. highly connected MPAs) were identified by weighting 
paired MPA connections based on vessel durations and analysing 
MPA community structure using fast greedy modularity optimi-
zation (‘igraph’ in r; Clauset, Newman, & Moore,  2004; Csardi & 
Nepusz, 2006). The number of MPAs in which each nonindigenous 
species was expected to occur was applied to the clusters using 
Equation 3; none of the seven MPAs with low species distribution 
model coverage were retained in the cluster analysis as they also 
had low vessel traffic.

2.3 | Statistical analysis

Linear regressions were run to test: (a) the interactive and additive 
effects of species and climate (current, future) on the probability 
of occurrence within an MPA and the proportion of MPA area that 
is suitable; and (b) the interactive effects of bioregion (Strait of 
Georgia, Southern Shelf and Northern Shelf including one northern 
offshore MPA) and proportion of an MPA that is nearshore (<20 m 
depth) on the proportion of an MPA that is suitable for each spe-
cies and climate combination separately. Bioregion and proportion 
of nearshore area were selected as two descriptors of MPAs that 
can be used to explore how environmental suitability varies across 
MPAs coastwide. Top models were selected by evaluating all pos-
sible predictor combinations based on Akaike information crite-
rion (AIC) and AIC weights (‘MuMIn’ package in r; Bartón, 2009); 
the second best-fit model was selected in cases where ΔAIC < 2. 
Additive effects of climate and bioregion were also tested on aver-
age temperature and salinity within MPAs. Tukey contrasts were 
used to determine significant differences between factor levels 
and interaction terms. All analyses were done in r (R Development 
Core Team, 2018).

3  | RESULTS

The expected richness and probability of occurrence for nonindig-
enous species was generally high across MPAs under current condi-
tions and increased under future conditions (Figure 2, see Appendix S3  
for species-specific maps). Across MPAs and species, probability of 

(2)E
(

Sk
)

=

J
∑

j=1

pjk.

(3)E
(

Mj

)

=

K
∑

k=1

pjk.

(4)Hjk =

L
∑

l=1

(

pjkl ×al
)

,

https://www.marinetraffic.com
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occurrence increased in 82% of cases (497 of 608) and decreased in 
only 14% of cases (84 of 608). MPAs with maximal expected rich-
ness (7–8 species) increased by 24% from 35 to 53 MPAs (of 76) 
under future conditions; richness declined slightly for five MPAs 
(−0.13 ± 0.14; Figure 2; Appendix S2, Figure S3). Overall, nonindig-
enous species richness increased the most in the Northern Shelf bi-
oregion (15.6%), followed by the Southern Shelf (9.5%) and Strait of 
Georgia (4.4%).

Species and climate had an interactive effect on the proba-
bility of occurrence within an MPA (Top model, F15,1200 = 29.08, 
p  <  0.001, adj. r2  =  0.26) and the proportion of MPA area that 
is suitable (F15,1200  =  48.29, p  <  0.001, adj. r2  =  0.37; Figure  3). 
Caprella had the highest environmental suitability values, whereas 
Styela had the lowest (Tukey contrasts, p  <  0.001), followed by 
Carcinus (p  < 0.002; Figure 3). The proportion of MPA area that 
is suitable was mediated by bioregion for all species and climate 
projections (Table  2); nonindigenous species had greater envi-
ronmental suitability in MPAs within the Strait of Georgia, except 
for Carcinus which had higher suitability in the Southern Shelf 
(Appendix S2, Figure S4). The proportion of nearshore area within 

MPAs had additive or interactive effects with bioregion for all 
species except for Caprella; however, the direction and strength 
of the effect varied by species (Appendix S2, Figure S4). Surface 
water temperature within MPAs increased under future climate 
conditions (Tukey contrasts, p  <  0.001) and was higher in the 
Strait of Georgia than the other bioregions (p < 0.001; Full model, 
F3,604 = 96.60, p < 0.001, adj. r2 = 0.32). Salinity did not change 
significantly with future climate (p > 0.05), but was higher in the 
Northern Shelf (p < 0.001; F3,604 = 27.70, p < 0.001, adj. r2 = 0.12; 
Appendix S2, Figure S5).

Vessel traffic connected 61 of the original 83 MPAs (73%) and 
created four clusters of highly connected MPAs (Figure  4). All 
the clusters contained MPAs that extended across the BC coast-
line. The probability of occurrence of modelled species was gen-
erally 80%–90% across MPAs within vessel clusters, with fewer  
suitable MPAs for Styela (Figure  5). Probability of occurrence 
within clusters increased the most under future conditions for 
Styela, followed by the other three modelled tunicates. For 
Carcinus, probability of occurrence increased in the two clusters 
that cover the Southern Shelf bioregion and the Central Coast 

F I G U R E  2   Expected richness (bars) and probability of occurrence (matrix) in marine protected areas for eight nonindigenous species 
by bioregion. Environmental suitability was estimated for (a) current climate conditions, (b) future (average conditions from 2041 to 
2070) conditions and (c) the change from current to future conditions. Richness bars are the mean of bootstrapped species distribution 
models ± 95% CIs, and mean change within bioregions is in text
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F I G U R E  3   Environmental suitability 
within marine protected areas (MPAs) for 
eight modelled nonindigenous species 
under current (light grey) and future  
(dark grey) climate conditions. The 
probability of occurrence within an MPA 
(a) and proportion of MPA area that is 
suitable (b) increases under future climate 
conditions. Bars are the mean across 
replicate models and MPAs ± 95% CIs;  
‘*’ indicate nonindigenous species that 
have significantly lower values than all 
others (p ≤ 0.002)

TA B L E  2   Regression model terms for the additive (‘+’) and interactive (‘:’) effect of bioregion (Strait of Georgia, Southern Shelf, Northern 
Shelf) and proportion of the marine protected area (MPA) that is nearshore (<20 m depth; significant slopes provided, ‘m’) on the proportion 
of MPA area that is suitable for nonindigenous species, separately by species and climate projections. Significance of model terms (‘NS’ for 
p > 0.05), top model test statistics, adjusted r2 and Akaike information criterion weight (‘AICw’) are provided

Nonindigenous 
species Climate Bioregion Nearshore Bioregion: Nearshore Top model statistics Adj. r2 AICw

Styela clava Current p < 0.001 NS NS F2,73 = 67.16, p < 0.001 0.64 0.36

Future + + p = 0.04; Southern 
Shelf, m = −0.29

F5,70 = 34.89, p < 0.001 0.69 0.60

Botryllus schlosseri Current p < 0.001 p = 0.01, m = 0.05 NS F3,72 = 286.00, p < 0.001 0.92 0.72

Future + + p = 0.005; Southern 
Shelf, m = −0.18; 
Northern Shelf, 
m = 0.15

F5,70 = 41.29, p < 0.001 0.73 0.93

Didemnum vexillum Current p < 0.001 NS NS F2,73 = 97.77, p < 0.001 0.72 0.68

Future p < 0.001 p = 0.05, m = −0.13 NS F3,72 = 9.68, p < 0.001 0.26 0.44

Botrylloides 
violaceus

Current p < 0.001 p = 0.04, m = 0.06 NS F3,72 = 209.70, p < 0.001 0.89 0.26

Future + + p = 0.004; Southern 
Shelf, m = −0.24; 
Northern Shelf, 
m = 0.13

F5,70 = 38.37, p < 0.001 0.71 0.94

Carcinus maenas Current + + p = 0.01; Northern 
Shelf, m = 0.24

F5,70 = 13.80, p < 0.001 0.46 0.83

Future + + p = 0.03; Northern 
Shelf, m = 0.30

F5,70 = 27.66, p < 0.001 0.64 0.84

Ocinebrellus 
inornatus

Current p < 0.001 p = 0.03, m = 0.09 NS F3,72 = 34.32, p < 0.001 0.57 0.50

Future + + p = 0.03; Northern 
Shelf, m = 0.24

F5,70 = 11.07, p < 0.001 0.40 0.85

Caprella mutica Current p < 0.001 NS NS F2,73 = 134.80, p < 0.001 0.78 0.64

Future p < 0.001 NS NS F2,73 = 46.71, p < 0.001 0.55 0.46

Sargassum muticum Current p < 0.001 p = 0.04, m = 0.06 NS F3,72 = 174.30, p < 0.001 0.87 0.65

Future p < 0.001 NS NS F2,73 = 56.81, p < 0.001 0.60 0.38
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of BC (i.e. clusters 2 and 3), and decreased in the other two 
(Figures 4 and 5).

4  | DISCUSSION

Our results show that MPA networks have a high potential for in-
vasion based on environmental suitability and major vectors of 
spread—shipping and boating. Invasions into MPAs are expected to 
increase under future climate conditions, a finding that is consistent 
with predicted trends for marine systems globally (García Molinos 

et al., 2015). Given the trajectory of climate conditions, only vigilant 
vector awareness and management can potentially mitigate these 
predictions, particularly for species with limited ability for self- 
dispersal such as tunicates. We recommend that monitoring and 
management efforts target MPA networks that are highly connected 
by vessel traffic and show projected increases in environmental suit-
ability under future climates for nonindigenous species of concern. 
In our study area, the most susceptible and connected MPAs for 
invasive tunicates were generally within the Strait of Georgia and 
Northern Shelf bioregions (Figures 4 and 5). Carcinus maenas—an in-
vader with notably high impact potential—is also expected to be able 

F I G U R E  4   Vessel traffic connections 
between marine protected areas (MPAs) 
are vectors of nonindigenous species 
across the coast of British Columbia, 
Canada. (a) Connections between MPAs 
colour-coded by duration (days) within the 
MPAs and (b) MPAs that are highly linked 
by vessel traffic are indicated as clusters 
(‘C1’–‘C4’)

F I G U R E  5   Percent of marine protected 
areas (MPAs) in which a nonindigenous 
species is expected to occur among 
those highly connected by vessel traffic 
(‘C1’–‘C4’) under current (squares) and 
future (circles) climate conditions, and 
the change (triangle) from current to 
future conditions. Symbols are the mean 
of bootstrapped species distribution 
models ± 95% CIs
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to invade MPAs further north in the Northern Shelf bioregion in the 
future. MPAs in Canada's Pacific coast waters have a high propor-
tion of area that is suitable to the modelled nonindigenous species 
under future conditions (70%–80%; Figure 3b). This indicates that 
upon introduction, a substantial amount of the MPA network will 
be susceptible to the invader. Outcomes of invasions can be diffi-
cult to predict, but a small number of high impact invaders can have 
significant consequences, and the likelihood of further invasion and 
impacts often increases in areas with higher nonindigenous species 
richness (Braga, Gómez-Aparicio, Heger, Vitule, & Jeschke,  2018; 
Simberloff & Von Holle, 1999).

Some MPAs world-wide have already experienced significant im-
pacts of invaders that threaten their conservation status. For instance 
nonindigenous species dominate a protected coral reef community in 
the Mediterranean Sea, comprising up to 44% of fish density and 100% 
of epi-benthic molluscs among sites (Rilov et  al.,  2018). In an Atlantic 
coast MPA, Didemnum drives native epi-benthic biodiversity loss (Kaplan 
et  al., 2018). Carcinus is currently present in seagrass meadows within 
MPAs in the Southern Shelf of BC, where it can decimate seagrass cover 
and alter fish communities as shown in BC and other Canadian waters 
(Appendix S2; Howard, Francis, Côté, & Therriault,  2019; Matheson 
et al., 2016). All the nonindigenous species included in this study have the 
potential to impact protected communities through resource competition 
(i.e. Styela, Botryllus, Didemnum, Botrylloides, Caprella), habitat modifica-
tion (Didemnum, Carcinus, Sargassum) or predation (Carcinus, Ocinebrellus, 
Caprella; Table  1; Fofonoff, Ruiz, Steves, Simkanin, & Carlton,  2018; 
Molnar et al., 2008).

Upon primary introduction and establishment in a new region— 
generally via shipping and historically via aquaculture vectors 
for marine systems (Molnar et  al.,  2008; Williams et  al.,  2013)— 
invaders often exhibit stepping stone dispersal between areas with 
suitable habitat. Such spread may be achieved through self-dispersal,  
although for many invaders this is highly limited by larval settle-
ment rates and mobility (Table  1). Invaders with high dispersal 
capability but minimal range expansions are likely restricted by en-
vironmental suitability or biotic interactions. For instance Carcinus 
has moderate to high dispersal capability but its distribution in the 
Northeastern Pacific has been limited in part by environmental 
conditions (Compton, Leathwick, & Inglis,  2010) and by biotic re-
sistance from native crab species (Hunt & Yamada,  2003; Jensen, 
McDonald, & Armstrong, 2007); our results show that the current 
temperature and salinity boundary will shift northwards allowing ex-
pansion under future conditions, whereas the Strait of Georgia may 
become too warm. Conversely, Botrylloides and Botryllus tunicates 
are widespread in BC but have low self-dispersal capability due to 
larvae that remain in the plankton from a few hours to a few days 
after spawning (i.e. anchiplanic); these species were likely spread 
through human-mediated secondary vectors including shipping and 
boating (e.g. Clarke Murray et al., 2011; Simkanin, Davidson, Falkner, 
Sytsma, & Ruiz, 2009; Ulman et al., 2019), movements of maritime 
structures such as oil rigs and docks (Iacarella, Davidson, & Dunham, 
2019) and aquaculture translocations (Haydar & Wolff, 2011). Ship 
and boat traffic is a particularly strong vector within regions owing 

to the large number of vessels and their frequency of movements (as 
shown here; Iacarella, Burke, et al., 2020), the entrainment poten-
tial in biofouling, ballast and bilge water (Clarke Murray et al., 2011; 
Fletcher et al., 2017; Ulman et al., 2019) and the lack of regulatory 
oversite within domestic waters (Briski, Wiley, & Bailey,  2012; 
Simkanin et al., 2009). Comprehensive risk assessments at the spe-
cies and MPA level would need to consider self-dispersal capability 
and other vectors and source locations (Iacarella, Burke, et al., 2020). 
However, understanding invasion potential across MPA networks 
for a suite of species and primary vectors, as shown here, provides 
spatial planning and management direction at a larger scale and can 
be used to prioritize limited resources.

Our study focused on nonindigenous species that have already 
established in some parts of coastal BC and are representative of 
a variety of functional groups that may be afforded introduction 
opportunities in the future. International vessel traffic is a likely 
transfer mechanism for incoming novel introductions and is ex-
pected to increase over time. Global shipping traffic is projected 
to rise by 240%–1,209% from 2014 to 2050 based on economic 
growth models (Sardain, Sardain, & Leung, 2019). In our study re-
gion, a recently approved pipeline expansion will increase tanker 
traffic between Asia and the Port of Vancouver by seven-fold 
(DFO, 2018). Regional scale traffic for ships and recreational 
boats is also on an upward trajectory, although predictions for 
the magnitude of these changes are not currently available. We 
determined likelihood of secondary spread from vessel traffic 
connections from 1 year of tracking data, but vessel intensity will 
likely be higher in future scenarios. Higher propagule pressure 
from international shipping will increase the likelihood of uptake 
by local vectors, and potential expansion of environmental suit-
ability with climate change will further facilitate establishment 
and spread.

Our results can provide an indication of risk for future invasions 
via secondary spread, as well as range expansions in response to 
climate change. Further prioritization at the individual MPA level 
may identify native species and habitats that are most susceptible 
to impacts by these different nonindigenous species, and may de-
termine a cumulative risk across nonindigenous species for each 
MPA. As with all species distribution modelling efforts, our predic-
tions do not account for the ability of species to spread into areas 
with conditions that differ from those where they are currently 
found or for adaptation (Compton et al., 2010); thus our estimates 
of environmental suitability may be conservative. The inclusion 
of substrate type and bottom water conditions as environmental 
model parameters—currently only available over limited spatial 
extents within our modelling domain—would also contribute to a 
better understanding of susceptibility within areas and how factors 
such as nearshore area extent influence environmental suitability, 
particularly for benthic invaders. Our environmental suitability pre-
dictions indicate the likelihood of survival for nonindigenous spe-
cies in surface waters or shallow benthos, which may not survive 
or establish in deeper areas; this is a key area for development of 
future modelling efforts.
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The Convention on Biological Diversity Aichi Target 9 calls for 
identification and prioritization of invasive species and pathways, 
and management of the determined priorities by 2020. McGeoch 
et al. (2016) propose that prioritization must also include determin-
ing sites that are susceptible to invasion (defined as ‘high exposure 
and high invasion probability’) and sensitive to invasion (‘severe 
consequences of impact’, e.g. protected areas). Applying species dis-
tribution and vector models is a promising method for prioritizing 
species, pathways and sites. However, very few studies have done 
this to-date (McGeoch et  al.,  2016). Previous studies that identi-
fied susceptible sites based on environmental suitability (or climate) 
and vector strength did so for Dreissena polymorpha (zebra mussels) 
transported between lakes by recreational boaters (Stewart-Koster, 
Olden, & Johnson, 2015) and for plant seeds attached to visitors to 
Antarctica (Chown et al., 2012). The only other study, to our knowl-
edge, that has measured invasion risk across protected areas was 
conducted using species distribution models for invaders in terres-
trial and MPAs in Europe; vectors were not measured, but human 
accessibility was a key factor in protected area invasions (Gallardo 
et  al.,  2017). Our study provides a first-step approach to evaluat-
ing the three components of prioritization (species, pathways, sites) 
with the treatment of MPAs as equally vulnerable to invasion (i.e. 
having high conservation value) and determination of which were 
most likely to be invaded across a suite of nonindigenous species 
with different life-history traits and based on networks created by 
the most pervasive vectors.

Management of prioritized invasion risks occurs at interna-
tional, national and site levels. International regulations and codes 
of practice for international ships’ ballast water and aquaculture 
have greatly reduced the risk of new invasions via these vectors 
(Williams et  al.,  2013). However, biofouling of ships and boats is 
largely unregulated and remains a concern for primary and sec-
ondary invasions (Briski et  al.,  2012; Davidson, Scianni, Minton, 
& Ruiz, 2018; Ulman et al., 2019); thus, new invaders are likely to 
come from biofouling communities such as those modelled here. 
Some nations impose biosecurity measures such as biofouling com-
pliance regulations for incoming vessels (Davidson et  al.,  2018; 
Ministry for Primary Industries, 2018), as well as trade bans on high 
impact invaders, albeit with mixed success of the latter (Patoka 
et  al.,  2018). Managers may also include nonindigenous species 
prevention, monitoring and mitigation measures in MPA and MPA 
network management plans. The Mediterranean MPA network has 
developed a common framework for prevention and early detec-
tion of invasions for managers to conduct in their MPAs (Otero, 
Cebrian, Francour, Galil, & Savini,  2013). In addition, California's 
MPA network management plan includes a commitment to inte-
grate MPAs into ongoing nonindigenous species monitoring with 
the aim to detect invasions that may impact MPAs (California 
Department of Fish and Wildlife, 2016). Prevention and mitigation 
activities are currently uncommon in MPAs globally, though there 
are some notable exceptions, including the use of MPA zoning reg-
ulations to ban fishing nets in areas infested with invasive Caulerpa 
taxifolia alga to reduce further spread (Industry & Investment NSW, 

2009), as well as targeted removal of Carcinus maenas and Pterois 
lionfish species (Iacarella, Saheed, et al., 2019). Limiting artificial 
structures such as docks within and nearby MPAs can also reduce 
vessel traffic (Iacarella, Burke, et al., 2020) and stepping-stone dis-
persal of biofouling species associated with these surfaces (Bishop 
et  al.,  2017). Managing invasions at an MPA network level is a 
promising approach to use in concert with individual MPA risk as-
sessments as it affords risk management and prioritization across 
many MPAs and utilizes distinct boundaries from which vectors 
can be regulated with protected area legislation. It is paramount 
to act on these issues now as climate change and increasing inva-
sion pathways threaten to compromise protected areas and impact 
other relatively pristine areas in the near future.
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